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Preface

The first edition of this book appeared in 1992; this is the sixth edition and there have 
been a few changes, mostly a few corrections and additions, but also more substan-
tive changes to Chapter 13 Data Handling and Probability Theory. Echoing the words 
of my predecessor Professor Glyn James, the range of material covered in this sixth 
edition is regarded as appropriate for a first-level core studies course in mathematics for 
undergraduate courses in all engineering disciplines. Whilst designed primarily for use 
by engineering students it is believed that the book is also highly suitable for students 
of the physical sciences and applied mathematics. Additional material appropriate for 
second-level undergraduate core studies, or possibly elective studies for some engi-
neering disciplines, is contained in the companion text Advanced Modern Engineering 
Mathematics.

The objective of the authoring team remains that of achieving a balance between 
the development of understanding and the mastering of solution techniques, with the 
emphasis being on the development of the student’s ability to use mathematics with 
understanding to solve engineering problems. Consequently, the book is not a collec-
tion of recipes and techniques designed to teach students to solve routine exercises, nor 
is mathematical rigour introduced for its own sake. To achieve the desired objective 
the text contains:

l Worked examples
 Approximately 500 worked examples, many of which incorporate mathematical 

models and are designed both to provide relevance and to reinforce the role of 
mathematics in various branches of engineering. In response to feedback from 
users, additional worked examples have been incorporated within this revised 
edition.

l Applications
 To provide further exposure to the use of mathematical models in engineering 

practice, each chapter contains sections on engineering applications. These sec-
tions form an ideal framework for individual, or group, case study assignments 
leading to a written report and/or oral presentation, thereby helping to develop 
the skills of mathematical modelling necessary to prepare for the more open-
ended modelling exercises at a later stage of the course.

l Exercises
 There are numerous exercise sections throughout the text, and at the end of each 

chapter there is a comprehensive set of review exercises. While many of the 
exercise problems are designed to develop skills in mathematical techniques, 
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others are designed to develop understanding and to encourage learning by 
doing, and some are of an open-ended nature. This book contains over 1200 
exercises and answers to all the questions are given. It is hoped that this provi-
sion, together with the large number of worked examples and style of presenta-
tion, also make the book suitable for private or directed study. Again in response 
to feedback from users, the frequency of exercise sections has been increased 
and additional questions have been added to many of the sections.

l Numerical methods
 Recognizing the increasing use of numerical methods in engineering practice, 

which often complement the use of analytical methods in analysis and design 
and are of ultimate relevance when solving complex engineering problems, 
there is wide agreement that they should be integrated within the mathemat-
ics curriculum. Consequently the treatment of numerical methods is integrated 
within the analytical work throughout the book.

The position of software use is an important aspect of engineering education. 
The decision has been taken to use mainly MATLAB but also, in later chapters, 
MAPLE. Students are encouraged to make intelligent use of software, and where 
appropriate codes are included, but there is a health warning. The pace of technol-
ogy shows little signs of lessening, and so in the space of six years, the likely time 
lapse before a new edition of this text, it is probable that software will continue to be 
updated, probably annually. There is therefore a real risk that much coding, though 
correct and working at the time of publication, could be broken by these updates. 
Therefore, in this edition the decision has been made not to overemphasize specific 
code but to direct students to the Companion Website or to general principles instead. 
The software packages, particularly MAPLE, have become easier to use without the 
need for programming skills. Much is menu driven these days. Here is more from Glyn 
on the subject that is still true:

Students are strongly encouraged to use one of these packages to check the 
answers to the examples and exercises. It is stressed that the MATLAB (and a 
few MAPLE) inserts are not intended to be a first introduction of the package to 
students; it is anticipated that they will receive an introductory course elsewhere 
and will be made aware of the excellent ‘help’ facility available. The purpose 
of incorporating the inserts is not only to improve efficiency in the use of the 
package but also to provide a facility to help develop a better understanding 
of the related mathematics. Whilst use of such packages takes the tedium out 
of arithmetic and algebraic manipulations it is important that they are used to 
enhance understanding and not to avoid it. It is recognized that not all users of 
the text will have access to either MATLAB or MAPLE, and consequently all 
the inserts are highlighted and can be ‘omitted’ without loss of continuity in 
developing the subject content.

Throughout the text two icons are used:

l An open screen  indicates that use of a software package would be useful 

(for example, for checking solutions) but not essential.

l A closed screen  indicates that the use of a software package is essential or 

highly desirable.
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Specific changes in this sixth edition are an improvement in many of the diagrams, 
taking advantage of present-day software, and modernization of the examples and 
language. Also, Chapter 13 Data Handling and Probability Theory has been significantly 
modernized by interfacing the presentation with the very powerful software package 
R. It is free; simply search for ‘R Software’ and download it. I have been much aided 
in getting this edition ready for publication by my hardworking colleagues Matthew, 
John and Yinghui who now comprise the team.

Feedback from users of the previous edition on the subject content has been favour-
able, and consequently no new chapters have been introduced. However, in response to 
the feedback, chapters have been reviewed and amended/updated accordingly. Whilst 
subject content at this level has not changed much over the years the mode of deliv-
ery is being driven by developments in computer technology. Consequently there has 
been a shift towards online teaching and learning, coupled with student self-study pro-
grammes. In support of such programmes, worked examples and exercise sections are 
seen by many as the backbone of the text. Consequently in this new edition emphasis 
is given to strengthening the ‘Worked Examples’ throughout the text and increasing the 
frequency and number of questions in the ‘Exercise Sections’. This has involved the 
restructuring, sometimes significantly, of material within individual chapters.

A comprehensive Solutions Manual is obtainable free of charge to lecturers using 
this textbook. It will be available for download online at go.pearson.com/uk/he/
resources.

Also available online is a set of ‘Refresher Units’ covering topics students should 
have encountered at school but may not have used for some time.

This text is also paired with a MyLab™ - a teaching and learning platform that 
empowers you to reach every student. By combining trusted author content with digital 
tools and a flexible platform, MyLab personalizes the learning experience and improves 
results for each student. MyLab Math for this textbook has over 1150 questions to 
assign to your students, including exercises requiring different types of mathematics 
applications for a variety of industry types. Note that students require a course ID and 
an access card in order to use MyLab Math (see inside front cover for more information 
or contact your Pearson account manager at the link go.pearson.com/findarep).

 Acknowledgements
The authoring team is extremely grateful to all the reviewers and users of the text who 
have provided valuable comments on previous editions of this book. Most of this has 
been highly constructive and very much appreciated. The team has continued to enjoy 
the full support of a very enthusiastic production team at Pearson Education and wishes 
to thank all those concerned.

 Phil Dyke
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 Glyn James
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 July 2019

http://go.pearson.com/uk/he/resources
http://go.pearson.com/uk/he/resources
http://go.pearson.com/findarep


About the authors

New authors Matthew Craven and Yinghui Wei join one of the original authors John 
Searl under the new editor, also one of the original authors, Phil Dyke, to produce this 
the sixth edition of Modern Engineering Mathematics.

Phil Dyke is Professor of Applied Mathematics at the University of Plymouth. He 
was a Head of School for twenty-two years, eighteen of these as Head of Mathematics 
and Statistics. He has over forty-five years’ teaching and research experience in 
Higher Education, much of this teaching engineering students not only mathematics 
but also marine and coastal engineering. Apart from his contributions to both Modern 
Engineering Mathematics and Advanced Modern Engineering Mathematics he is the 
author of eleven other textbooks ranging in topic from advanced calculus, Laplace 
transforms and Fourier series to mechanics and marine physics. He is now semi-retired, 
but still teaches, is involved in research, and writes. He is a Fellow of the Institute of 
Mathematics and its Applications.

Matthew Craven is a Lecturer in Applied Mathematics at the University of Plymouth. 
For fifteen years, he has taught foundation year, postgraduate and everything in between. 
He is also part of the author team for the 5th edition of the companion text, Advanced 
Modern Engineering Mathematics. He has research interests in computational simula-
tion, real-world operational research, high performance computing and optimization.

Yinghui Wei is an Associate Professor of Statistics at the University of Plymouth. She 
has taught probability and statistics modules for mathematics programmes as well as 
for programmes in other subject areas, including engineering, business and medicine. 
She has broad research interests in statistical modelling, data analysis and evidence 
synthesis.

John Searl was Director of the Edinburgh Centre for Mathematical Education at the 
University of Edinburgh before his retirement. As well as lecturing on mathemati-
cal education, he taught service courses for engineers and scientists. His most recent 
research concerned the development of learning environments that make for the effect-
ive learning of mathematics for 16–20 year olds. As an applied mathematician he 
worked collaboratively with (amongst others) engineers, physicists, biologists and 
pharmacologists, he is keen to develop problem-solving skills of students and to pro-
vide them with opportunities to display their mathematical knowledge within a variety 
of practical contexts. The contexts develop the extended reasoning needed in all fields 
of engineering.



xxvi  ABOUT THE AUTHORS

The original editor was Glyn James who retired as Dean of the School of Mathematical 
and Information Sciences at Coventry University in 2001 and then became Emeritus 
Professor in Mathematics at the University. He graduated from the University College 
of Wales, Cardiff in the late 1950s, obtaining first-class honours degrees in both 
Mathematics and Chemistry. He obtained a PhD in Engineering Science in 1971 as an 
external student of the University of Warwick. He was employed at Coventry in 1964 
and held the position of the Head of Mathematics Department prior to his appointment 
as Dean in 1992. His research interests were in control theory and its applications to 
industrial problems. He also had a keen interest in mathematical education, particularly 
in relation to the teaching of engineering mathematics and mathematical modelling. 
He was co-chairman of the European Mathematics Working Group established by the 
European Society for Engineering Education (SEFI) in 1982, a past chairman of the 
Education Committee of the Institute of Mathematics and its Applications (IMA), and 
a member of the Royal Society Mathematics Education Subcommittee. In 1995 he 
was chairman of the Working Group that produced the report Mathematics Matters 
in Engineering on behalf of the professional bodies in engineering and mathematics 
within the UK. He was also a member of the editorial/advisory board of three inter-
national journals. He published numerous papers and was co-editor of five books on 
various aspects of mathematical modelling. He was a past Vice-President of the IMA 
and also served a period as Honorary Secretary of the Institute. He was a Chartered 
Mathematician and a Fellow of the IMA.  Sadly, Glyn James passed away in October 
2019 during the production of this edition; his enthusiastic input was sorely missed, but 
this and its companion text remain a fitting legacy.

The original authors are David Burley, Dick Clements, Jerry Wright together with 
Phil Dyke and John Searl.  The short biographies that are not here can be found in the 
previous editions.



Number, Algebra 
and Geometry

 Chapter 1 Contents

 1.1 Introduction 2

 1.2 Number and arithmetic 2

 1.3 Algebra 14

 1.4 Geometry 36

 1.5 Number and accuracy 47

 1.6 Engineering applications 57

 1.7 Review exercises (1–25) 59

1



2  NUMBER,  ALGEBRA AND GEOMETRY

 1.1 Introduction
Mathematics plays an important role in our lives. It is used in everyday activities from 
buying food to organizing maintenance schedules for aircraft. Through applications devel-
oped in various cultural and historical contexts, mathematics has been one of the decisive 
factors in shaping the modern world. It continues to grow and to find new uses, particu-
larly in engineering and technology, from electronic circuit design to machine learning.

Mathematics provides a powerful, concise and unambiguous way of organizing and 
communicating information. It is a means by which aspects of the physical universe 
can be explained and predicted. It is a problem-solving activity supported by a body of 
knowledge. Mathematics consists of facts, concepts, skills and thinking processes – 
aspects that are closely interrelated. It is a hierarchical subject in that new ideas and 
skills are developed from existing ones. This sometimes makes it a difficult subject for 
learners who, at every stage of their mathematical development, need to have ready 
recall of material learned earlier.

In the first two chapters we shall summarize the concepts and techniques that most 
students will already understand and we shall extend them into further developments in 
mathematics. There are four key areas of which students will already have considerable 
knowledge.

● numbers
● algebra
● geometry
● functions

These areas are vital to making progress in engineering mathematics (indeed, they will 
solve many important problems in engineering). Here we will aim to consolidate that 
knowledge, to make it more precise and to develop it. In this first chapter we will deal 
with the first three topics; functions are considered next (see Chapter 2).

 1.2 Number and arithmetic

 1.2.1 Number line

Mathematics has grown from primitive arithmetic and geometry into a vast body of 
knowledge. The most ancient mathematical skill is counting, using, in the first instance, 
the natural numbers and later the integers. The term natural numbers commonly refers 
to the set ℕ = {1, 2, 3, p}, and the term integers to the set ℤ = {0, 1, −1, 2, −2, 3, 
−3, p}. The integers can be represented as equally spaced points on a line called the 
number line as shown in Figure 1.1. In a computer the integers can be stored exactly. 
The set of all points (not just those representing integers) on the number line represents 
the real numbers (so named to distinguish them from the complex numbers, which are 

-0.5 √2

-3 -2 -1 0 1 2 3

-7
5

1
Figure 1.1
The number line.
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discussed in Chapter 3). The set of real numbers is denoted by ℝ. The general real num-
ber is usually denoted by the letter x and we write ‘x in ℝ’, meaning x is a real number. 
A real number that can be written as the ratio of two integers, like 32  or − 7

5 , is called a 
rational number. Other numbers, like Ë2 and , that cannot be expressed in that way 
are called irrational numbers. In a computer the real numbers can be stored only to a 
limited number of figures. This is a basic difference between the ways in which com-
puters treat integers and real numbers, and is the reason why the computer languages 
commonly used by engineers distinguish between integer values and variables on the 
one hand and real number values and variables on the other.

 1.2.2 Representation of numbers

For everyday purposes we use a system of representation based on ten numerals: 0, 1, 
2, 3, 4, 5, 6, 7, 8, 9. These ten symbols are sufficient to represent all numbers if a posi-
tion notation is adopted. For whole numbers this means that, starting from the right-
hand end of the number, the least significant end, the figures represent the number of 
units, tens, hundreds, thousands, and so on. Thus one thousand, three hundred and sixty-
five is represented by 1365, and two hundred and nine is represented by 209. Notice the 
role of the 0 in the latter example, acting as a position keeper. The use of a decimal point 
makes it possible to represent fractions as well as whole numbers. This system uses ten 
symbols. The number system is said to be ‘to base ten’ and is called the decimal sys-
tem. Other bases are possible: for example, the Babylonians used a number system to 
base sixty, a fact that still influences our measurement of time. In some societies a num-
ber system evolved with more than one base, a survival of which can be seen in imper ial 
measures (inches, feet, yards, p ). For some applications it is more convenient to use 
a base other than ten. Early electronic computers used binary numbers (to base two); 
modern computers use hexadecimal numbers (to base sixteen). For elementary (pen-
and-paper) arithmetic a representation to base twelve would be more convenient than 
the usual decimal notation because twelve has more integer divisors (2, 3, 4, 6) than 
ten (2, 5).

In a decimal number the positions to the left of the decimal point represent units 
(100), tens (101), hundreds (102) and so on, while those to the right of the decimal point 
represent tenths (10−1), hundredths (10−2) and so on. Thus, for example,

2 1 4 · 3 6
T T T  T T
102 101 100  10−1 10−2

so

214.36 = 2(102) + 1(101) + 4(100) + 3 61
10

1
100( )  ( )+

 = 200 + 10 + 4 + 3
10

6
100  +

 = 21436
100

5359
25  =

In other number bases the pattern is the same: in base b the position values are b0, 
b1, b2, p and b−1, b−2, p . Thus in binary (base two) the position values are units, twos, 
fours, eights, sixteens and so on, and halves, quarters, eighths and so on. In hexadecimal 
(base sixteen) the position values are units, sixteens, two hundred and fifty-sixes and so 
on, and sixteenths, two hundred and fifty-sixths and so on.
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 Example 1.1 Write (a) the binary number 10111012 as a decimal number and (b) the decimal  
number 11510 as a binary number.

 Solution (a) 10111012 = 1(26) + 0(25) + 1(24) + 1(23) + 1(22) + 0(21) + 1(20)

  = 6410 + 0 + 1610 + 810 + 410 + 0 + 110

  = 9310

(b) We achieve the conversion to binary by repeated division by 2. Thus

115 ÷ 2 = 57 remainder 1 (20)

 57 ÷ 2 = 28 remainder 1 (21)

 28 ÷ 2 = 14 remainder 0 (22)

 14 ÷ 2 =  7 remainder 0 (23)

  7 ÷ 2 =  3 remainder 1 (24)

  3 ÷ 2 =  1 remainder 1 (25)

  1 ÷ 2 =  0 remainder 1 (26)

so that

11510 = 11100112

 Example 1.2 Represent the numbers (a) two hundred and one, (b) two hundred and seventy-five,  
(c) five and three-quarters and (d) one-third in

 (i) decimal form using the figures 0, 1, 2, 3, 4, 5, 6, 7, 8, 9;

 (ii) binary form using the figures 0, 1;

 (iii) duodecimal (base twelve) form using the figures 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ∆, e.

 Solution (a) two hundred and one

 (i) = 2 (hundreds) + 0 (tens) and 1 (units) = 20110

 (ii) = 1 (one hundred and twenty-eight) + 1 (sixty-four) + 1 (eight) + 1 (unit) 
  = 110010012

 (iii) = 1 (gross) + 4 (dozens) + 9 (units) = 14912

  Here the subscripts 10, 2, 12 indicate the number base.

(b) two hundred and seventy-five

 (i) = 2 (hundreds) + 7 (tens) + 5 (units) = 27510

 (ii) = 1 (two hundred and fifty-six) + 1 (sixteen) + 1 (two) + 1 (unit) = 1000100112
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 (iii) = 1 (gross) + 10 (dozens) + eleven (units) = 1∆e12

  (∆ represents ten and e represents eleven)

(c) five and three-quarters

 (i) = 5 (units) + 7 (tenths) + 5 (hundredths) = 5.7510

 (ii) = 1 (four) + 1 (unit) + 1 (half) + 1 (quarter) = 101.112

 (iii) = 5 (units) + 9 (twelfths) = 5.912

(d) one-third

 (i) = 3 (tenths) + 3 (hundredths) + 3 (thousandths) + p = 0.333 p 10

 (ii) = 1 (quarter) + 1 (sixteenth) + 1 (sixty-fourth) + p = 0.010101 p 2

 (iii) = 4 (twelfths) = 0.412

 1.2.3 Rules of arithmetic

The basic arithmetical operations of addition, subtraction, multiplication and division are 
performed subject to the Fundamental Rules of Arithmetic. For any three numbers  
a, b and c:

(a1) the commutative law of addition

a + b = b + a

(a2) the commutative law of multiplication

a × b = b × a

(b1) the associative law of addition

(a + b) + c = a + (b + c)

(b2) the associative law of multiplication

(a × b) × c = a × (b × c)

(c1) the distributive law of multiplication over addition and subtraction

(a + b) × c = (a × c) + (b × c)

(a − b) × c = (a × c) − (b × c)

(c2) the distributive law of division over addition and subtraction

(a + b) ÷ c = (a ÷ c) + (b ÷ c)

(a − b) ÷ c = (a ÷ c) − (b ÷ c)

Here the brackets indicate which operation is performed first. These operations are 
called binary operations because they associate with every two members of the set of 
real numbers a unique third member; for example,

2 + 5 = 7  and  3 × 6 = 18
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 Example 1.3 Find the value of (100 + 20 + 3) × 456.

 Solution Using the distributive law we have

(100 + 20 + 3) × 456 = 100 × 456 + 20 × 456 + 3 × 456

 = 45 600 + 9120 + 1368 = 56 088

Here 100 × 456 has been evaluated as

100 × 400 + 100 × 50 + 100 × 6

and similarly 20 × 456 and 3 × 456.
This, of course, is normally set out in the traditional school arithmetic way:

   456
   123 ×
 1 368
 9 120
45 600
56 088

 Example 1.4 Rewrite (a + b) × (c + d) as the sum of products.

 Solution Using the distributive law we have

(a + b) × (c + d) = a × (c + d) + b × (c + d)

= (c + d) × a + (c + d) × b

= c × a + d × a + c × b + d × b

= a × c + a × d + b × c + b × d

applying the commutative laws several times.

A further operation used with real numbers is that of powering. For example, a × a  
is written as a2, and a × a × a is written as a3. In general the product of n a’s where  
n is a positive integer is written as an. (Here the n is called the index or exponent.) 
Operations with powering also obey simple rules:

an × am = an+m (1.1a)

an ÷ am = an−m (1.1b)

(an)m = anm (1.1c)

From rule (1.1b) it follows, by setting n = m and a ≠ 0, that a0 = 1. It is also convention 
to take 00 = 1. The process of powering can be extended to include the fractional powers 
like a1/2. Using rule (1.1c),
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(a1/n)n = an/n = a1

and we see that

a1/n = nËa

the nth root of a. Also, we can define a−m using rule (1.1b) with n = 0, giving

1 ÷ am = a−m,    a ≠ 0

Thus a−m is the reciprocal of am. In contrast with the binary operations +, ×, − and ÷, 
which operate on two numbers, the powering operation ( )r operates on just one element 
and is consequently called a unary operation. Notice that the fractional power

am/n = (nËa)m = nË(am)

is the nth root of am. If n is an even integer, then am/n is not defined when a is negative. 
When nËa is an irrational number then such a root is called a surd.

Numbers like Ë2 were described by the Greeks as a-logos, without a ratio number. 
An Arabic translator took the alternative meaning ‘without a word’ and used the Arabic 
word for ‘deaf’, which subsequently became surdus, Latin for deaf, when translated 
from Arabic to Latin in the mid-twelfth century.

 Example 1.5 Find the values of

(a) 271/3 (b) (−8)2/3 (c) 16−3/2

(d) (−2)−2 (e) (−1/8)−2/3 (f ) (9)−1/2

 Solution (a) 271/3 = 3Ë27 = 3

(b) (−8)2/3 = (3Ë(−8))2 = (−2)2 = 4

(c) 16−3/2 = (161/2)−3 = (4)−3 = 1
43  = 1

64

(d) (−2)−2 = 
1

2 2
1
4( )

  
−

=

(e) (−1/8)−2/3 = [3Ë(−1/8)]−2 = [3Ë(−1)/ 3Ë(8)]−2 = [−1/2]−2 = 4

(f) (9)−1/2 = (3)−1 = 1
3

 Example 1.6 Express (a) in terms of Ë2 and simplify (b) to (f ).

(a) Ë18 + Ë32 − Ë50 (b) 6/Ë2 (c) (1 − Ë3)(1 + Ë3)

(d) 
2

1 3  − ÷  (e) (1 + Ë6)(1 − Ë6) (f ) 
1 2

1 6

  

  

−
+

÷
÷



8  NUMBER,  ALGEBRA AND GEOMETRY

 Solution (a) Ë18 = Ë(2 × 9) = Ë2 × Ë9 = 3Ë2

 Ë32 = Ë(2 × 16) = Ë2 × Ë16 = 4Ë2

 Ë50 = Ë(2 × 25) = Ë2 × Ë25 = 5Ë2

Thus Ë18 + Ë32 − Ë50 = 2Ë2.

(b) 6/Ë2 = 3 × 2/Ë2

Since 2 = Ë2 × Ë2, we have 6/Ë2 = 3Ë2.

(c) (1 − Ë3)(1 + Ë3) = 1 + Ë3 − Ë3 − 3 = −2

(d)  Using the result of part (c), 
2

1 3  − ÷
 can be simplified by multiplying ‘top and

 bottom’ by 1 + Ë3 (notice the sign change in front of the Ë  ). Thus

2

1 3

2 1 3

1 3 1 3  
  

(   )

(   )(   )−
=

+
− +÷

÷
÷ ÷

= 
2 1 3

1 3

(   )

  

+
−

÷

= −1 − Ë3

(e) (1 + Ë6)(1 − Ë6) = 1 − Ë6 + Ë6 − 6 = −5

(f) Using the same technique as in part (d) we have

1 2

1 6

1 2 1 6

1 6 1 6

  

  
  

(   )(   )

(   )(   )

−
+

=
− −
+ −

÷
÷

÷ ÷
÷ ÷

 = 
1 2 6 1

1 6

      

  

− − +
−

÷ ÷ ÷ 2

 = − (1 − Ë2 − Ë6 + 2Ë3)/5

 This process of expressing the irrational number so that all of the surds are in the 
numerator is called rationalization.

When evaluating arithmetical expressions the following rules of precedence are observed:

● the powering operation ( )r is performed first
● then multiplication × and/or division ÷
● then addition + and/or subtraction −

When two operators of equal precedence are adjacent in an expression the left-hand 
operation is performed first. For example,

12 − 4 + 13 = 8 + 13 = 21

and

15 ÷ 3 × 2 = 5 × 2 = 10
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The precedence rules are overridden by brackets; thus

12 − (4 + 13) = 12 − 17 = −5

and

15 ÷ (3 × 2) = 15 ÷ 6 = 2.5

This order of precedence is commonly referred to as BODMAS/BIDMAS (meaning: 
brackets, order/index, multiplication, addition, subtraction).

 Example 1.7 Evaluate 7 − 5 × 3 ÷ 22.

 Solution Following the rules of precedence, we have

7 − 5 × 3 ÷ 22 = 7 − 5 × 3 ÷ 4 = 7 − 15 ÷ 4 = 7 − 3.75 = 3.25

1.2.4  Exercises

1 Find the decimal equivalent of 110110.1012.

2 Find the binary and octal (base eight) equivalents 
of the decimal number 16 321. Obtain a simple 
rule that relates these two representations of the 
number, and hence write down the octal equivalent 
of 10111001011012.

3 Find the binary and octal equivalents of the 
decimal number 30.6. Does the rule obtained in 
Question 2 still apply?

4 Use binary arithmetic to evaluate

(a) 100011.0112 + 1011.0012

(b) 111.100112 × 10.1112

5 Simplify the following expressions, giving the 
answers with positive indices and without brackets:

(a) 23 × 2−4 (b) 23 ÷ 2−4    (c) (23)−4

(d) 31/3 × 35/3 (e) (36)−1/2 (f ) 163/4

6 The expression 7 − 2 × 32 + 8 may be evaluated 
using the usual implicit rules of precedence. It 
could be rewritten as ((7 − (2 × (32))) + 8) using 
brackets to make the precedence explicit. Similarly 
rewrite the following expressions in fully bracketed 
form:

(a) 21 + 4 × 3 ÷ 2

(b) 17 − 62+3

(c) 4 × 23 − 7 ÷ 6 × 2

(d) 2 × 3 − 6 ÷ 4 + 32−5

7 Express the following in the form x + yË2 with x 
and y rational numbers:

(a) (7 + 5Ë2)3 (b) (2 + Ë2)4

(c) 3Ë(7 + 5Ë2) (d) Ë(11
2  − 3Ë2)

8 Show that

1
2 2a b c

a b c
a b c  

  
  

  +
=

−
−÷

÷

Hence express the following numbers in the form  
x + yËn where x and y are rational numbers and n is 
an integer:

(a) 
1

7 5 2  + ÷
 (b) 

2 3 2

9 7 2

  

  

+
−

÷
÷

(c) 
4 2 3

7 3 3

  

  

−
−

÷
÷

 (d) 
2 4 5

4 5

  

  

+
−

÷
÷

9 Find the difference between 2 and the squares of

1

1

3

2

7

5

17

12

41

29

99

70
, , , , , 

(a) Verify that successive terms of the sequence 
stand in relation to each other as m/n does to  
(m + 2n)/(m + n).

(b) Verify that if m/n is a good approximation to  
Ë2 then (m + 2n)/(m + n) is a better one, and that  
the errors in the two cases are in opposite directions.

(c) Find the next three terms of the above sequence. 

 




